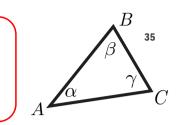
EPFL

ME 10-1: Compensation paramétrique

- Expression du problème
 - Modèle fonctionnel
 - linéaire exemple: triangle + générale
 - non-linéaire compact (polycopié)
 - développé exemple: tableau + logarithme sur moodle


- forme quadratique extremum lié Lagrange
- réduction du système d'équations
- taile des matrices à inverser: $u \times u$
- Solution numerique d'une exemple
- Solution analytique d'autres exemples

Exemple de triangle en compensation paramétrique

$$\ell_{\alpha} = 61.341 \, \text{gon}$$
 $\ell_{\beta} = 99.658 \, \text{gon}$
 $\ell_{\gamma} = 38.986 \, \text{gon}$

Avant (connu en conditionnelle)

$$(\ell_{\alpha} - v_a) + (\ell_{\beta} - v_b) + (\ell_{\gamma} - v_g) - 200 = 0$$

- Procédé « paramétrique «
 - Une équation par chaque observation
 - Paramètres indépendants ?
 - Pas plus des paramètres que nécessaires
 - (sinon pas de redondance, ou problème combiné)
 - Pratiquement comment ?
- www.ttpoll.eu
- Room: ME4U (en majuscules)

$$\ell - \mathbf{v} = f(\mathbf{x})$$

EPFL Rappelle compensation paramétrique

- Modèles
 - générale $\ell \mathbf{v} = f(\mathbf{x})$
 - linéaire ? (tableau)
 - en vecteur matrice

$$(\ell - \mathbf{a}_0) - \mathbf{v} = \mathbf{A}\mathbf{x}$$

développé

en vecteur - matrice
$$\begin{pmatrix} \check{\ell}_1 = a_{10} + a_{11}\check{x}_1 + \dots + a_{1u}\check{x}_u \\ \vdots \\ \check{\ell}_n = a_{n0} + a_{n1}\check{x}_1 + \dots + a_{nu}\check{x}_u \end{pmatrix}$$

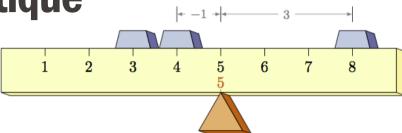
$$\begin{bmatrix} \ell_1 \\ \vdots \\ \ell_n \end{bmatrix} - \begin{bmatrix} a_{10} \\ \vdots \\ a_{n0} \end{bmatrix} - \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1u} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nu} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_u \end{bmatrix}$$

EPFL Rappelle compensation paramétrique

- Modèles

 - - en vecteur matrice

Modèles
• générale
$$\ell-\mathbf{v}=f(\mathbf{x})$$
• Non-linéaire ? (tableau)
• en vecteur - matrice
$$\begin{cases} \ell_1-v_1=f_1(\check{x}_1+\cdots+\check{x}_u)\\ \vdots\\ \ell_n-v_n=f_n(\check{x}_1+\cdots+\check{x}_u) \end{cases}$$

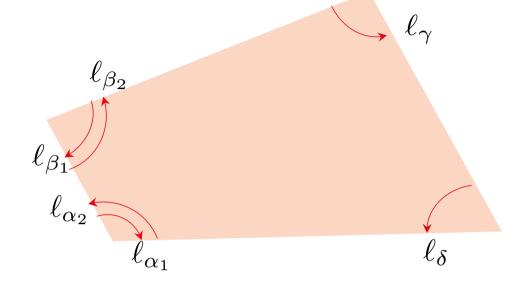

$$\begin{bmatrix} \mathring{v}_1 \\ \vdots \\ \mathring{v}_n \end{bmatrix} = \begin{bmatrix} \ell_1 \\ \vdots \\ \ell_n \end{bmatrix} - \begin{bmatrix} f_1(\mathring{x}_1 + \dots + \mathring{x}_u) \\ \vdots \\ f_n(\mathring{x}_1 + \dots + \mathring{x}_u) \end{bmatrix}$$

$$\begin{bmatrix} \mathring{v}_1 \\ \vdots \\ \mathring{v}_n \end{bmatrix} - \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \underbrace{\begin{bmatrix} a_{11} & \dots & a_{1u} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nu} \end{bmatrix}}_{\mathbf{A} = \frac{\partial f_i()}{\Omega}} \underbrace{\begin{bmatrix} \delta x_1 \\ \vdots \\ \delta x_u \end{bmatrix}}_{\delta \mathbf{x}}$$

EXEMPLE de logarithme en compensation paramétrique

- Modèles
 - Non-linéaire $\ell \mathbf{v} = f(\mathbf{x})$
 - Logarithme $\ell_i v_i = f_i(a, b) = a \cdot \ln(b + t_i)$
- Résolu sur Moodle

ME 10-2: moyenne arithmétique



- Objectifs
 - applique le concept des moindres carrées
 - apprivoiser les formules générales
- Poser le problème dans le cas général
 - minimum sous conditions (Lagrange)
 - dériver par rapport à v, à k et à x
 - résoudre le système d'équations
- Court-circuiter Lagrange (merci à Gauss ;-)
 - grâce au modèle simple, placer **x** dans **v** (après **k** devient inutile)
 - dériver la forme quadratique uniquement par rapport à x
 - déjà fait pour introduire les moindres carrés Exo7 et cela n'avait surpris personne!

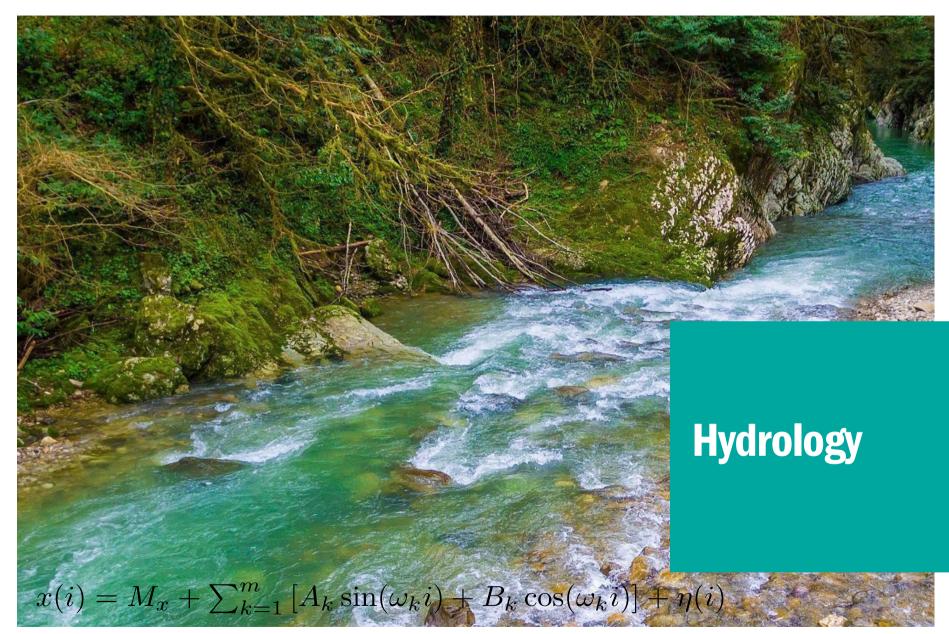
Méthodes d'estimation

48

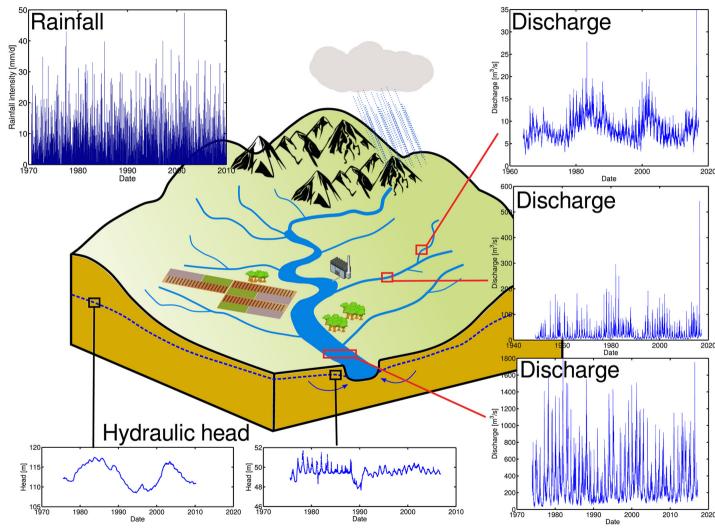
Exemple - Quadrilatère

Observations

$$\alpha \ 2 \times, \ \beta \ 2 \times, \ \gamma, \ \delta$$


$$\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \sigma_{\delta} = \sigma_{a}$$

- Solution(s)
 - A. Proposez vous-même (par 2 ou 3)
 - B. Montrez-le au tableau


Poser le problème

- 1. Combine des mesures ?
- 2. Choix des paramètres ?
- 3. Modèle stochastique = ?

EPFL

Water Resources Research, Volume: 55, Issue: 5, Pages: 4043-4065, First published: 09 April 2019, DOI: (10.1029/2018WR024579)

Frédéric Jordan · 2nd

Co-fondateur et Directeur @ Hydrique | Guide de montagne | Explorateur en quête d'innovation

Lausanne, Vaud, Switzerland · Contact info

École polytechnique fédérale de Lausanne

SITEMAP

Home

About us

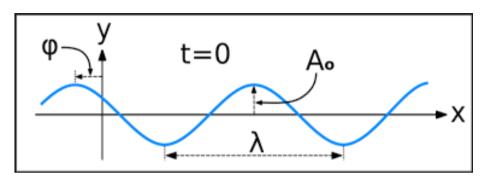
Contact

S E R V I C E S

Real-Time Flood and

Hydropower Forecasting

Wastewater tracking

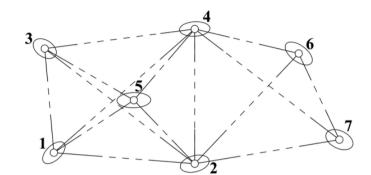

Engineering: sediment / lakes / hydraulics

E/

EPFL

ME 10-3: Procédé et exemples

- Ajustement d'une fonction sinusoïdale polycopié pp. 90-102
 - 1 y = c
 - 2 $y = c + a \cdot sin(\omega t)$
 - 3 $y = c + a \cdot sin(\omega t + \phi)$
 - 4 $y = c + a \cdot sin(\Omega t + \phi)$ avec $\Omega = 2\pi/24$ heures


- Corrigé (modèles, analyses, valeurs numériques) dans le polycopié
 - T plus intuitif que $\omega \Longrightarrow y = c + a \cdot \sin(2\pi / T \cdot t + \phi)$
 - Peut-on fixer la période estimée à 24 heures ?
 La période estimée n'est pas significativement différente de 1 jours dans le cas suivant :

$$\frac{\hat{T}-24}{\sigma_{\hat{T}}} \leq 2$$
 à 3

EPFL

ME 10-3 : Analyse des résultats

- Premier résultats
 - paramètres compensés x̂, formules 13 et 14
- Autres résultats
 - résidus compensés ŷ, formules 15 ou 16
 - observations compensées $\hat{\ell}$
 - cofacteurs $\mathbf{Q}_{\hat{x}\hat{x}}$, $\mathbf{Q}_{\hat{v}\hat{v}}$ et $\mathbf{Q}_{\hat{\ell}\hat{\ell}}$

- Estimation de la précision
 - variance et écart-type a posteriori
 - quotient global: $\hat{\sigma}_0$ a posteriori / σ_0 a priori $=\hat{\sigma}_0/\sigma_0$
 - Résidu significatif ? À tester :
 - ullet le quotient local : résidu / écart-type de l'observation $=\hat{v}_i/\sigma_{\ell_i}$
 - ullet le résidu standardisé : résidu / son écart-type $=\hat{v}_i/\sigma_{\hat{v}_i}$
 - Paramètre significatif ? tester : $\hat{x}_j/\sigma_{\hat{x}_j}$